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Abstract
We theoretically study the phase transitions of a polymer escaping from a
pore based on the Flory theory of the coil–globule transitions of a single
polymer chain. We take into account the radius of the pore and the polymer–
pore interaction and predict a first-order escape transition coupled to the
conformational change of the polymer chain. We also study the kinetics of
the polymer under an external electric field based on Langevin equations. The
translocation time tt is predicted to be ∝n1+ν for a large number n of polymer
segments, where ν is the radius of gyration exponent. The exponent of the
translocation time decreases with increasing the electric field.

1. Introduction

Translocation of a polymer escaping from a pore plays an important role for many biological
processes and for technological applications. For example, protein transport through channels
in a biological membrane, the motion of DNA across a pore into the cell nucleus, and size
exclusion chromatography are a few examples where a polymer escapes from a pore.

The problems of a polymer escaping through a pore have recently received great attention
in experimental [1–5] and theoretical [6–19] studies. In vitro experiments show that DNA
polymers can be driven through nanopores by an external electric field [1–3]. Many theoretical
studies focus on solving Fokker–Plank equations which give some physical pictures about the
translocation time through a pore [7–9]. The deformation of a polymer that is compressed
between two planar plates has also been discussed as escape transitions of an end-tethered ideal
chain [20–22]. When the size of the pore is large, the polymer remains a state of confinement
within the pore. On decreasing the width of a pore, the number of the conformations of the
polymer can produce an entropy force tending to pull the chain out of the pore. Therefore it is
important to understand the escape processes in terms of some variables such as a pore size,
length of a polymer, and external fields.

In this paper we study escape processes of a polymer chain coupled to the conformational
change of the polymer and address how the size of a pore, the length of a polymer, the interaction
between the pore and polymer, and the electric fields affect the escape processes. Based on
the Flory model for coil–globule transitions of a single polymer chain, we predict a first-order
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Figure 1. A polymer molecule consisting of n monomers is escaping from a long pore. As the
diameter D of the pore is decreased, the chain inside the pore is compressed.

phase transition between an imprisoned state, where the polymer segments are completely
included into the pore, and an escaped state, where the polymer segments are divided both into
the pore and solution. We also study the kinetics of a polymer escaping from a pore under an
external field based on Langevin equations and find some scaling behaviours. The problems
addressed here provide valuable insight into the physics of DNA confinement in structures
with biological relevant length scale [1–3].

2. Free energy of a polymer escaping from a pore

Consider a polymer escaping from a long square pore, as pictured in figure 1. To derive the
equilibrium state of the polymer we first consider the thermodynamics of our system, based
on the Flory–Huggins theory for polymer solutions [24].

Let n be the number of polymer segments, and n1 and n2 the number of segments inside
(side 1) and outside (side 2) the pore, respectively. We then have n = n1+n2. As the diameter D
of the pore is decreased, the chain is compressed and the chain inside the pore has a dimension
of R1 along the pore (z direction). Its dimensions in the x and y directions are bound to D.
Let R2 be the mean radius of the occupied region of the polymer segments outside the pore.
Then the volume fraction of the polymer segments inside the pore is given by

φ1 = (4π/3)a3n1

D2 R1
, (1)

and the volume fraction of the segments in the sphere of radius R2 is given by

φ2 = 4
3πa3n2/(

4
3π R3

2) = a3n2/R3
2, (2)

where (4/3)πa3 corresponds to the volume of a unit segment on the polymer. We here define the
expansion factors of the chain inside the pore as αx = αy = D/R0,1 and αz = R1/R0,1, where
R0,1 = a

√
n1 is the radius of gyration of the ideal chain with n1 segments. The expansion

factor of the polymer outside the pore is given by α2 = R2/R0,2, where R0,2 = a
√

n2 is
the radius of gyration of the ideal chain with n2 segments. Using these expansion factors,
the volume fractions are then given by φ1 = (4π/3)/(α2

xαz
√

n1) and φ2 = 1/(α3
2
√

n2). The
expansion factor αx is also given as a function of n1: αx = (D/R0)

√
n/

√
n1, where R0 = a

√
n

is the radius of gyration of the ideal chain with n segments. The fraction D/R0 is an important
parameter which characterizes the pore size.

The free energy of the polymer chain is given by

F = F1 + F2, (3)
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where F1 (F2) represents the free energy of the polymer on side 1 (side 2). The free energy of
the polymer inside the pore is given by

F1 = F1,el + F1,mix + Fint, (4)

where F1,el represents the elastic free energy due to the deformation of the segment distribution
from the ideal state. This free energy is given by Flory [24]:

β F1,el = 1
2 (α2

x + α2
y + α2

z − 3) − ln αxαyαz, (5)

where β ≡ 1/kBT , T is the absolute temperature, and kB is the Boltzmann constant. The
second term in equation (4) represents the free energy for a mixing of a polymer chain with
solvent molecules inside the pore, and is given by [24]

β F1,mix = n1

φ1
[(1 − φ1) ln(1 − φ1) + χφ1(1 − φ1)], (6)

where χ represents the Flory–Huggins interaction parameter between a polymer segment and
a solvent molecule. The translational entropy term (φ1/n) ln φ1 of the polymer chain can be
neglected since the centre of gravity of the polymer is fixed near a pore in a thermal equilibrium
state. The pre-factor n1/φ1 is the total number of unit cells of the pore. The free energy Fint in
equation (4) is given by β Fint = βε0n1 = βε0(n − n2), where ε0 represents the polymer–pore
interaction energy.

The free energy F2 of the polymer outside the pore is given by F2 = F2,el + F2,mix, where
F2,el represents the elastic free energy due to the deformation of the segment distribution from
the ideal state, and is given by [24]

β F2,el = 3[ 1
2 (α2

2 − 1) − ln α2], (7)

and the free energy for a mixing of a polymer with solvent molecules on side 2 is given by

β F2,mix = n2

φ2
[(1 − φ2) ln(1 − φ2) + χφ2(1 − φ2)], (8)

where the pre-factor n2/φ2 is the total number of unit cells in the sphere of the radius R2.
In a thermal equilibrium state, the expansion factors αi (i = z, 2) and the fraction n2 are

determined by minimizing the free energy (3) with respect to αi and n2: (∂ F/∂α2)αz ,n2 = 0,
(∂ F/∂αz)α2,n2 = 0, and (∂ F/∂n2)αz ,α2, = 0,

Figure 2 shows the numerical results of the number n2 of polymer segments outside the
pore (a), the expansion factor α2 (b), and αz (c) as a function of the confinement width D/R0

for n = 100 and χ = 0 (good solvent conditions). The interaction parameter ε ≡ βε0 between
the polymer segment and pore is changed. The dashed curves show the unstable regions. For
larger values of D/R0, most polymer segments are inside the pore. On decreasing the width D
of the pore, the polymer segments suddenly escape from the pore to the solution. We predict
a first-order phase transition between an imprisoned state, where the polymer segments are
completely included into the pore, and a partially escaped state, where the polymer segments
are divided into the pore and solution. On increasing ε, the phase transition point shifts to
smaller values of D, since the attractive interaction between the pore and polymer segments
becomes strong. The width of the jump in n2 becomes larger with increasing ε.

3. Kinetics of a polymer escaping from a pore

We next consider the kinetics of a polymer escaping from a pore by using our free energy
function (3). We also take into account the effects of an external electric field acting on a
polymer chain which has an electric charge q . The dynamics of the escape processes of
polymer segments can be describe by Kramer’s model [23] for a chemical reaction consisting
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Figure 2. Numerical results of the number n2 of polymer segments outside the pore (a), the
expansion factor α2 (b), and αz (c) as a function of the confinement width D/R0 for n = 100 and
χ = 0. The interaction parameter ε ≡ βε0 between a polymer segment and a pore is changed.

of a classical particle moving in a one-dimensional asymmetric double-well potential. The
particle coordinate x corresponds to the number n2 of polymer segments that have escaped
from a pore. At a temperature T , the dynamics of a polymer escaping from a pore is described
by a fluctuating force ξ(t) and by a linear damping force −γ ṅ2, where γ is a friction constant.
These forces enter Newton’s equation of motion in the form of a Langevin equation

∂2n2

∂ t2
= − ∂ F

∂n2
− γ

∂n2

∂ t
+ ξ(t) + q E, (9)

where the fluctuating force ξ(t) denotes Gaussian white noise with zero mean, which obeys
the fluctuation–dissipation theorem 〈ξ(t)〉 = 0, and 〈ξ(0)ξ(t)〉 = 2γ kBT δ(t). The friction
constant γ is given by γ = 6πηR2, where η represents the viscosity of a solvent [25]. The
gyration radius R2 of the polymer chain on side 2 is given by R2/a = α2

√
n2 as a function

of n2 and α2. The friction constant γ is then changed with time in our model. The last term
represents the Coulomb force acting to the polymer chain of an electric charge q under an
external electric field E .

We also need the kinetic equations for the expansion factors α2 and αz . The relaxation
process can be described by the following Lagevin equations:

γ1
∂αz

∂ t
= − ∂ F

∂αz
+ ξ1(t), (10)

γ2
∂α2

∂ t
= − ∂ F

∂α2
+ ξ2(t), (11)

where we assume that the friction constants γ1 and γ2 are constant (6πηa).
In our numerical calculations, we focus on the case of n = 100, χ = 0, and ε = −0.05

for a typical example. The equilibrium properties are shown in figure 2. As most polymer
segments exist inside the pore at the initial stage, we put n2 = 1, n1 = n − n2, α2 = 1.1, and
αz = 1.1. To derive time evolutions of a polymer escaping from a pore at a given confinement
width D/R0, we numerically solve the three coupled Langevin equations (9), (10), and (11).
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Figure 3. Time evolution of n2 plotted against the reduced time τ = (kBT/6πηa)t for various
value of an external field s ≡ q E with D/R0 = 0.2, n = 100, χ = 0, and ε = −0.05.

Figure 3 shows the time evolution of n2 for various values of the external electric field
s ≡ q E with D/R0 = 0.2, n = 100, χ = 0, and ε = −0.05. With time, the number n2

is increased and has a power law n2 ∝ t5/8 at late stages for s = 0. In the case of weak
external field, the growth of the exponent becomes small in the intermediate time region,
which corresponds to a saddle point of the free energy. At a late stage, the friction of the chain
dominates the dynamics and so equation (9) is given by nν

2(∂n2/∂ t) ∝ constant, where we
have used that the friction constant is proportional to R2 = anν

2 as in the Zimm model [25].
Then we obtain the time evolution of n2 as n2 ∝ t1/(1+ν) for a late stage. When ν = 3/5, the
exponent is 5/8. We here define the translocation time tt as the time which satisfies n2 ∼ n.
We then obtain tt ∝ n1+ν [19]. When ν = 3/5, we get tt ∝ n8/5 for long flexible polymer
chains. When the hydrodynamic interaction between polymer segments is neglected, as in
the Rouse model (ν = 1), we have tt ∝ n2, which has been obtained by Sung–Park [8] and
Muthukumar [9]. When ν = 0, or the friction is independent of the polymer length, we have
tt ∝ n.

On increasing the strength of the electric field, the translocation time becomes shorter
and the exponent δ of the power law n2 ∝ tδ at late stages is increased from 5/8 to 2. The
effect of thermal fluctuations in the time evolution of n2 is less with increasing s. For larger
external fields, we have n̈2 ∼ constant: n2 ∝ t2 (tt ∝ n1/2). Recent experiments show that
polynucleotides thread through the alpha-hemolysin (αHL) channel as extended chains under
electric fields: the translocation time is proportional to the polymer’s contour length [1–3].
Our numerical results suggest that the DNA translocation can be controlled by the competition
between the external electric fields and the entropic elasticity due to the deformation of the
polymer in the pore.

4. Conclusion

We have studied the kinetics and phase transitions of a polymer escaping from a pore.
Depending on the pore size and the polymer–pore interaction, we predict a first-order escape
transition coupled to the conformational change of the polymer chain. The time evolution
of the polymer segments escaping from a pore is scaled as n2 ∝ t1/(1+ν) at late stages. The
exponent increases with increasing the external electric field. We hope that our approach will
provide useful insights into translocations of DNA under external fields, a invasion of RNA
viruses into a cell, incorporation of membrane proteins into a lipid bilayer, and drug delivery
systems.
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